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A B S T R A C T

Mitigating epidemic spreading and outbreaks is crucial to reducing their significant impacts on
people’s lives. Although research has begun to consider the impact of information networks
on disease transmission in recent years, most studies have not fully considered the high-
order characteristics in network structures. To better capture the dynamics of epidemic
spreading and comprehensively understand and predict epidemic transmission patterns, a
model of epidemic spreading in a coupled awareness-epidemic model, considering higher-
order structures, is proposed. Extensive simulations on real and synthetic structured networks
show that information networks influence the spread on physical contact networks by altering
individual behaviors, leading to a transition from bistability to a single stable state induced
by higher-order structures. Through theoretical analysis, it is proved that the corresponding
conclusion is that as the information influence value (an indicator that measures the impact
of information networks on physical contact networks) decreases, the impact of higher-order
structures on the system’s dynamic behavior gradually weakens. This leads to the disappearance
of the bistable phenomenon originally caused by the presence of higher-order structures, and the
system transitions from a bistable state to a single stable state. This transition is accompanied
by an increase in the threshold for epidemic outbreaks and a decrease in the stable infection
density. This work contributes to a deeper understanding of the influence of information on
epidemic dynamics, providing important theoretical guidance for the future development of
more effective prevention and control strategies.

1. Introduction

Complex networks comprehensively describe the interactions with various natural systems [1]. They are extensively used as the
foundational – and possibly multilayered [2] – social structure for dynamic processes [3], including disease spreading [4], innovation
diffusion and adoption [5], as well as opinion formation [6]. In the real world, the outbreak and spread of epidemics could severely
disrupt daily life and make profound impacts on people’s lives, such as the COVID-19 [7], the SARS virus [8], and influenza [9].
Consequently, the problem of effectively controlling disease transmission has attracted considerable attention [10].

The disease spreading not only conforms to the characteristics of simple disease transmission models but also can be influenced by
various behaviors and interactions. These influences are often accompanied by other networks, such as information networks (online,
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social networks) [11]. The diversified communication methods and the acceleration of information acquisition have profoundly
impacted human society [12]. When facing global pandemics like COVID-19, timely access to information related to the epidemic
becomes crucial since it aids in effectively addressing the challenges posed by the outbreak. Therefore, in recent years, an increasing
number of scholars have begun to focus on the interaction between information dissemination dynamics and epidemic spreading to
establish awareness-epidemic transmission models [13]. In these networks, one layer represents the physical contact network and
the other represents the information network. Each layer has distinct connectivity patterns: disease transmission occurs within the
physical network, while information exchange happens within the information network, with participants common to both [14].
The exchange of information leads to informed individuals taking a series of actions to curb the spread of disease within the physical
contact network [15]. For example, some researchers have studied the impacts of different types of information dissemination on
the epidemic spread, including the transmission modes of social media, news reports, and other channels [16]. Other studies have
analyzed the influence of network topology on the interaction between perception diffusion and epidemic transmission, exploring the
extent to which different network structures, such as scale-free networks and small-world networks [17]. In the disease transmission
research, researchers usually consider the impact of epidemic-related information and more complex higher-order structural factors
in addition to basic node and connectivity structures to enable more accurate prediction of disease spread dynamics [18].

Moreover, in the transmission process, contagion occurs in different ways: pairwise interactions (links in the network) or group
nteractions, which correspond to higher-order structures. Higher-order or group interactions, which arise from co-location activities,

are common in offline/physical spatio-temporal interaction networks [19,20]. These interactions play an essential role in epidemic
dynamics, as they increase the complexity of contact patterns. A person can be infected individually by every one of their neighbors
(simple infection) or through continuous exposure to a group of neighbors (group exposure), as exemplified in real-life scenarios
such as social gatherings [21] or aerosol transmission [22]. Investigating these group interactions aligns more closely with real-world
conditions and the intricate dynamics of disease transmission. Additionally, residents in larger cities tend to have more frequent
contacts, which can significantly influence epidemic spreading [23].

Previous studies have primarily focused on static network structures with pairwise interactions, such as the classical SIR and
EIR models [24], which have provided essential theoretical foundations for analyzing long-term disease transmission behavior and

short-term outbreak characteristics. As research has progressed, scholars have gradually recognized the importance of information
in disease transmission and began exploring the dynamics of coupled information and disease spread in complex networks.
Funk et al. [25] proposed a mathematical model that establishes the relationship between epidemiology and disease-related
nformation to analyze the spread of awareness within populations. Their study found that awareness related to epidemics can
educe disease incidence and even prevent its spread, especially when the disease is easily detected and information spreads rapidly.
ubsequently, Granell et al. [26] developed a two-layer network model to represent the coupled spread of epidemics and disease-

related information, discovering that information transmission can prevent outbreaks and trigger so-called subcritical spreading.
They further introduced mass media into the model to examine its role in suppressing infectious disease outbreaks [27]. Guo
et al. [28] proposed a threshold model to describe information transmission over multiplex networks, exploring the coupled spread
of epidemic and awareness. Sun et al. [29] examined asymmetrical dynamics of epidemic propagation and awareness diffusion
in multiplex networks, highlighting the importance of network topology and inter-layer dynamics. Similarly, Sun and Fu [30]
explored competitive dual-strain SIS models with awareness programs in heterogeneous networks, analyzing how different network
onfigurations influence epidemic outcomes. Their findings revealed that a node without awareness can only acquire information
f the proportion of its aware neighbors exceeds a certain threshold.

However, these studies primarily focus on static network structures with pairwise interactions and their impact on epidemic
hresholds. As research advances, scholars have discovered that disease transmission can exhibit more complex phenomena, such

as bistability and limit cycles. For example, when high-order structures are considered, disease spread may exhibit bistable
ehavior [18], meaning that the system can switch between two different stable states depending on the initial conditions.

Additionally, the emergence of limit cycles [31] indicates that disease transmission can display periodic outbreaks, a phenomenon
requently observed in real-world infectious diseases. To more comprehensively understand and predict the dynamics of disease
pread in complex networks, this study proposes coupling information and disease networks with high-order structures. This
pproach aims to reveal the impact of high-order interactions on disease transmission dynamics, as well as the regulatory effect
f information transmission on these dynamics, thereby providing new theoretical insights for developing more effective disease
revention strategies.

Therefore, this article aims to integrate information networks, physical contact networks, and their higher-order structures to
systematically study and observe their impact on disease transmission dynamics and regulation mechanisms, providing theoretical
support for more precise prevention strategies. We established a coupled awareness-epidemic model with high-order interactions.
Based on the impact of information networks on the bistability of physical contact networks caused by high-order structures, we
conducted numerical simulations on SocioPatterns collaboration and synthesis of structured networks, and analyzed the results.
Besides, we analyzed this phenomenon from two aspects: the equilibrium point and stability of the system using by the mean-field

ethod.

2. Model

In physical contact networks, considering the influence of high-order interactions may lead to bistability [18]. Under fixed
transmission rates, diseases may converge to different states (disease-free or endemic) with different initial conditions. The
dissemination of information can have a significant impact on the spread of diseases, which enables the intervention of information
networks to pull the system back from an endemic state to a disease-free state, or prevent the transitioning from a disease-free state
o an endemic state. Therefore, exploring how information networks affect the bistable phenomena in physical contact networks
ith high-order structures can better understand the spread of diseases.
2 
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Fig. 1. A schematic diagram of the coupled awareness-epidemic network. The information network is based on the Unaware–Aware–Unaware (UAU) model,
while the physical contact network is based on the Susceptible–Infectious–Susceptible (SIS) model, considering the influence of higher-order structures. In (a–b),
the propagation process in the information network is depicted. Panels (c–f) depict the propagation process in the physical contact network with nodes that are
unaware and susceptible, while (g–j) illustrate the process with nodes that are aware and susceptible. Specifically, (e) and (f) contrast scenarios with varying
numbers of infectious nodes, illustrating the additional increase in infection probability through higher-order interactions when multiple infectious nodes are
present. Panels (i) and (j) are similar in their depiction of these processes.

2.1. Coupled awareness-epidemic model with high-order interactions

We propose a awareness-epidemic model, where the physical contact network incorporates higher-order interactions, to
characterize the interactions during epidemic transmission. Individuals will be in different states in both information diffusion and
pidemic transmission. In the information network, information diffusion follows the Unaware–Aware–Unaware (UAU) model [32]:

each node can be of either an aware (A) state or an unaware (U) state; an unaware node becomes aware with probability 𝜆 after
communicating with an aware node; meanwhile, an aware node has a probability 𝜇2 forgetting epidemic-related information and
hus transforms into an unaware state and stops transforming. In the physical contact network, the epidemic spread process is
escribed by a Susceptible–Infectious–Susceptible (SIS) model [33] with higher-order structures. In this layer, a node can be in

either an infectious (I) state or a susceptible (S) state. A susceptible node becomes infected with a probability 𝛽 after contacting
with an infected node. It can also be infected by the higher-order structures it is connected to, with an additional infection probability
due to these higher-order interactions denoted as 𝛽𝛥. Similarly, an infected node recovers to the susceptible state with a probability
𝜇1.

It is important to note that the infection probability of susceptible individuals aware of the disease risk differs from those unaware.
usceptible individuals who recognize the disease risk exhibit a heightened sense of self-protection and are better prepared for the

impending epidemic, which reduces their infection risk. To reflect this, the infection probability of a conscious susceptible individual
upon contact is denoted as 𝛽𝐴 = 𝛾 𝛽𝑈 (𝛽𝑈 = 𝛽). This awareness also influences the infection effectiveness of higher-order structures on
that node. The parameter 𝛾 represents the effectiveness of the self-protection measures taken by conscious susceptible individuals,
ranging from 0 to 1. As 𝛾 approaches zero, self-protection measures become more effective; conversely, as 𝛾 approaches one, the
efficacy of these measures diminishes. The parameter 𝛾 referred to as information influence value later in the paper.

2.2. Simplicial complexes

Typically, higher-order structures are characterized by hypergraphs or simplicial complexes. This study uses simplicial complexes
o represent these higher-order structures, symbolizing the corresponding collective interactions. A simplicial complex is an

aggregation of simplices and has varying dimensions [34]. A 𝑑-simplex, or simplex of dimension 𝑑, is a collection of 𝑑 + 1 nodes
nd describes (𝑑 + 1)-body interactions. A 0-simplex is a node, a 1-simplex is a link, a 2-simplex (𝑖, 𝑗 , 𝑘) is a two-dimensional object
ade by three nodes, i.e. a (full) triangle, a 3-simplex is a tetrahedron, and so on.

A simplicial complex  defined on a given set of nodes  , where || = 𝑁 , comprises a set of 𝑀-simplexes  = {𝜌1, 𝜌2,… , 𝜌𝑀}.
This means that all the simplexes built from subsets of 𝜌 are also contained in . We indicate the number of 𝑑-simplexes in  as
𝑀𝑑 , where 𝑑 = 1, 2,… , 𝐷 (where 𝐷 is the dimension of the largest simplex in ), with the constraint ∑𝐷

𝑑=1 𝑀𝑑 = 𝑀 .
We use the adjacency matrix to present simplicial complexes mathematically. The adjacency matrix 𝐴 of a graph ( , 𝜉) (

represents the set of nodes on the graph, 𝜉 represents the set of edges on the graph) is an 𝑁 ×𝑁 matrix with entry 𝑎𝑖𝑗 = 1 when the
edge (𝑖, 𝑗) ∈ 𝜉, and 0 otherwise. In the case of simplicial complexes, consider tensors instead of matrices. In fact, for each dimension
𝑑, we can define the 𝑁 ×𝑁 ×⋯ ×𝑁

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟𝑑+1
adjacency tensor 𝐴(𝑑), whose entry 𝑎(𝑑)𝑖1 ,…,𝑖𝑑+1

is equal to 1 if the 𝑑-simplex (𝑖1,… , 𝑖𝑑+1)

belongs to the simplicial complex , and 0 otherwise. Notice that each tensor is symmetric with respect to its 𝑑 + 1 indices, namely
the value of a given entry 𝑎(𝑑)𝑖1 ,…,𝑖𝑛+1

is equal to the value of the entries corresponding to any permutation of its indices. According

to the above definition, 𝐴(1) coincides with the standard adjacency matrix 𝐴, while the 𝑁 × 𝑁 × 𝑁 adjacency tensor [35] 𝐴(2)
3 
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Fig. 2. Consideration of high-order structures on coupled awareness-epidemic model simulations in the SocioPatterns collaboration. Derived from detailed face-
to-face contact records in four environments: a. workplace, b. conference, c. high school, and d. high school. High-order structures are considered as simplicial
complex with 𝐷 = 2, when the information influence value 𝛾 = 1, meaning there is no influence from the information network on the physical contact network,
the prevalence curves are shown in panels a(1), b(1), c(1), and d(1). In this case, the coexistence of healthy and epidemic states is observed. When 𝛾 = 0.6,
indicating that the information network begins to influence the physical contact network, the prevalence curves are shown in panels a(2), b(2), c(2), and d(2).
As the influence further increases with 𝛾 = 0.2, the prevalence curves are displayed in panels a(3), b(3), c(3), and d(3). Here, the relationship between the mean
proportion of infected nodes derived from numerical simulations and the rescaled infectivity 𝛽∗ = 𝛽⟨𝑘1⟩

𝜇1
is plotted. This is done for different rescaling parameters

𝛽𝛥∗ = 𝛽𝛥⟨𝑘𝛥1 ⟩
𝜇1

, namely 𝛽𝛥∗ = 0.8 (blue circles) and 𝛽𝛥∗ = 1.5 (orange squares). The gray circles represent simulation curves of the equivalent conventional SIS model
𝛽𝛥∗ = 0), which indicates that higher-order interactions do not contribute any additional infection risk in the physical contact network. The horizontal axis
epresents rescaled infectivity 𝛽∗. The vertical axis represents density of infected nodes 𝑝𝐼∗ .

characterizes two-dimensional objects: one has 𝑎(2)𝑖𝑗 𝑘 = 1 if the three nodes 𝑖, 𝑗 , 𝑘 form a full triangle, and otherwise 𝑎(2)𝑖𝑗 𝑘 = 0. In this

way, it is possible to map completely the connectivity structure of a simplicial complex  into the entire set of 𝐷 adjacency tensors
𝐴(𝑑), where 𝑑 = 1, 2,… , 𝐷. We focus on simplicial complexes of dimension up to 𝑑 = 2 in this article.

3. Result

3.1. Simulation in the SocioPatterns collaboration

Firstly, to explore the disease spread in coupled awareness-epidemic network with high order interactions, consider their
evolution in empirical social structures. For this purpose, we refer to publicly available datasets depicting face-to-face interactions
gathered by the SocioPatterns collaboration [36]. These are typical examples of group meetings that can be naturally encoded as
simplices, differing in a set of binary interactions. We analyze interaction data gathered in four distinct social settings: a workplace
𝐼 𝑛𝑉 𝑆15) [37], a conference (𝑆 𝐹 𝐻 𝐻) [38], a middle school(𝐿𝑦𝑜𝑛𝑆 𝑐 ℎ𝑜𝑜𝑙) [39] and a high school (𝑇 ℎ𝑖𝑒𝑟𝑠13) [40]. For each scenario,

the face-to-face interactions were recorded at a time resolution of 20 s. Next, we applied appropriate augmentation techniques [41]
(detailed in Appendix A) to the data to observe bistability phenomena better. Table 1 presents the average generality of the four
eal-world simplicial complexes in the dataset both before and after undergoing data augmentation [42]. These augmented simplicial

complexes are simulated as the physical contact network depicted in Fig. 2. To better simulate the impact of information network
on physical contact network and eliminate bias, we construct an information network by randomly adding and removing edges on
the physical contact network while keeping the average degree of its nodes.

3.1.1. Simulation process
The simulations are conducted on coupled awareness-epidemic model built from four datasets. We use the Microscopic Markov

hain Approach (MMCA) [43] for the corresponding simulation, with the relevant method detailed in Appendix B. Specifically, each
simulation begins with an initial infection node density of 𝑝𝐼 (0) and proceeds with the transmission processes in the information
network as shown in Fig. 1(a–b) [26] and all possible infection pathways in the physical contact network as depicted in Fig. 1(c–
k). The information network has a corresponding influence on the physical contact network. If a state of absorption is attained
(i.e., where there are no susceptible individuals), the simulation is halted. Otherwise, the average steady-state density of infected
4 
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Table 1
Statistics of real-world networks.

Dataset Context ⟨𝑘⟩
⟨

𝑘𝛥
⟩

⟨𝑘⟩𝑎𝑢𝑔
⟨

𝑘𝛥
⟩𝑎𝑢𝑔

InVS15 Workplace 16.9 6.9 24.5 6.9
SFHH Conference 15.0 7.6 20.5 10.8
LyonSchool Middle school 19.4 4.1 22.2 4.2
Thiers13 High school 20.1 10.6 32.0 10.8

⟨𝑘⟩ denotes the average degree of nodes,
⟨

𝑘𝛥
⟩

denotes the average number of 2-simplices,
⟨𝑘⟩𝑎𝑢𝑔 denotes the average degree of nodes after undergoing data augmentation,
⟨

𝑘𝛥
⟩𝑎𝑢𝑔 denotes the average number of 2-simplices after undergoing data augmentation.

Table 2
Description of symbols.

Symbol Description

U Unaware state in the information network
A Aware state in the information network
S Susceptible state in the physical contact network
I Infectious state in the physical contact network
𝜆 The information transmission rate
𝛽 The infection rate if in Unaware state
𝛽𝐴 The infection rate if in Aware state
𝜇1 The information forgetting rate
𝜇2 The recovery rate
𝛾 Effectiveness of self-protection measures (information influence value)
𝑁 Number of nodes in the network
𝑝1 Probability of generating links
𝑝2 Probability of generating 2-simplices
𝐷 Dimensionality constraint of the simplicial complex
⟨𝑘1⟩ Average degree of nodes in the physical contact network
⟨

𝑘𝛥1
⟩

The average number of 2-simplices in the physical contact network
⟨𝑘2⟩ Average degree of nodes in the information network

nodes 𝑝𝐼∗ is calculated by averaging the values measured during the last 100 steps once a stable condition is reached. These outcomes
re based on the average of 50 runs, where the initial infection nodes are randomly distributed with a consistent density denoted
s 𝑝𝐼 (0).

Furthermore, different datasets correspond to different densities of one-dimensional and two-dimensional simplicial complexes
(refer to Table 1). Due to variations in the mean degrees and the mean numbers of two-dimensional simplicial complexes across
different datasets, we adjust the transmission probabilities to observe phenomena near the thresholds better. The infectiousness
arameters 𝛽 and 𝛽𝛥 are rescaled according to the average degree ⟨𝑘1⟩ of the nodes and the average number of two-dimensional
implicial complexes ⟨𝑘𝛥1 ⟩ occurring on the nodes, respectively. Simultaneously, different information influence values 𝛾 are adopted
o represent the influence of the information network on the physical contact network. All results are presented by rescaled
arameters 𝛽∗ = 𝛽⟨𝑘1⟩

𝜇1
and 𝛽𝛥∗ =

𝛽𝛥⟨𝑘𝛥1 ⟩
𝜇1

, which allows for a more nuanced understanding of the interplay between the information
and physical contact network. The corresponding symbol descriptions can be found in Table 2.

3.1.2. Simulation results
Fig. 2 displays the epidemic prevalence curves for four datasets. In each panel (Fig. 2a(1), b(1), c(1), d(1)), considering the

information influence value 𝛾 as 1, representing the scenario where the information network does not influence the physical contact
network, the graph illustrates the relationship between the average proportion of infected nodes at the steady state 𝑝𝐼 and the
rescaled transmissibility 𝛽∗ in the simple contagion model. Here, 𝛽𝛥∗ = 0.8 (blue circles) and 𝛽𝛥∗ > 1 (orange squares) are depicted.
For comparison, the case of 𝛽𝛥∗ = 0 is also illustrated, corresponding to the conventional SIS model without considering higher-order
influences (gray triangles), revealing the presence of bistability regions influenced by higher-order structures under different initial
conditions.

In each panel (Fig. 2a(2), b(2), c(2), d(2)), where the information influence value 𝛾 is set to 0.6. This configuration represents a
cenario where the information network inhibits the physical contact network. Under these conditions, we observe that the range
f bistability regions diminishes, and the entire bistability region shifts leftward. These phenomena indicate the reduction in the
hreshold for disease outbreaks. Similarly, by further reducing the information influence value to 0.2, in each panel (Fig. 2a(3),

b(3), c(3), d(3)), it was found that the bistable region further narrowed and continued to move to the left. These observations
nderscore the significant impact of the information network on the bistability phenomena induced by higher-order structures

within the physical contact network.
On different datasets, we observed the following phenomenon: in the 𝐼 𝑛𝑉 𝑆15 and 𝑇 ℎ𝑖𝑒𝑟𝑠13 datasets, as the influence of

information increases, the bistable region of high-order structures gradually decreases and hysteresis [44] effects appear. In the
𝑆 𝐹 𝐻 𝐻 and 𝐿𝑦𝑜𝑆 𝑐 ℎ𝑜𝑜𝑙 datasets, due to their topological characteristics, even if the disease infectivity is low, a certain infection
ensity can still be maintained in the population when the information impact is not significant. However, as the influence of
5 
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information increases, the bistable interval gradually lags behind and shrinks.
Further explanation of the aforementioned phenomenon: In the context of the physical contact network, high-order structure

refers to nonlinear effects caused by the interaction patterns within the network, which may include complex interactions along
transmission paths or tight connections among groups. When an information network intervenes, it has the potential to modify the
initial structure of the transmission network by impacting individual behaviors or the dissemination of information.

In the observed scenarios above, distinct behaviors are noted for two nonzero 𝛽𝛥 values when disregarding the influence of
information network layer on physical contact network, i.e., when the information influence value 𝛾 equals 1. For 𝛽𝛥∗ = 0.8, the
hange in the density of infected nodes with respect to 𝛽∗ mirrors that of 𝛽𝛥∗ = 0 (simple contagion), displaying a continuous
ransition. For 𝛽𝛥∗ > 1, localized epidemic states with 𝑝𝐼 > 0 appear at the epidemic threshold 𝛽𝑐∗ , which is noticeably lower than the
ther two cases. Moreover, this transition is discontinuous, exhibiting hysteresis loops in the bistability region, where both healthy
𝐼
∗ = 0 and localized epidemic 𝑝𝐼∗ > 0 states can coexist (as indicated by the dashed orange line). Notably, the final state in this

parameter region depends on the initial density of infected nodes 𝑝𝐼 (0). When considering the influence of information network
on physical contact network, i.e., 0 < 𝛾 < 1, although 𝛾 continuously approaches 0, this discontinuous transition generated by
higher-order structures gradually becomes continuous, and the bistable region continuously shrinks or even disappears.

3.2. Simulation in synthetic structured networks

The simplicial complexes in these simulations correspond to one-simplices and two-simplices with different social contexts and
ensities, yielding similar phenomenology. However, the generalized degree distributions exhibited by these empirical structures
re not highly concentrated around their mean values, making it difficult to systematically explore size effects. To gain a deeper
nderstanding of the phenomena within the simplicial contagion model, we turn our focus to investigating its behavior on synthetic
implicial complexes with controlled attributes.

3.2.1. Construction of a synthetic structured network
We use the Random Simplicial Complex model [18] to generate simplex simplicial models of different dimensions, which allows

for maintaining a fixed average degree ⟨𝑘1⟩ of nodes while varying the expected number
⟨

𝑘𝛥1
⟩

of ‘‘full’’ triangles (2-simplices) on
nodes. In this study, the model is constrained to 𝐷 = 2, which confines the necessary parameters to (𝑁 , 𝑝1, 𝑝2) where 𝑁 represents
the number of nodes, and 𝑝1 and 𝑝2 represent the probabilities of generating links and generating 2-simplices, respectively. Further,
this process can be easily extended to larger 𝐷. For any given size 𝑁 , simplicial complexes with desired ⟨𝑘1⟩ and

⟨

𝑘𝛥1
⟩

values can
be generated by appropriately adjusting 𝑝1 and 𝑝2, to constitute physical contact network. Similarly, when constructing information
network by randomly adding and removing edges to the physical contact network, This approach reflects the fact that information
spreads through different channels and social structures than physical contact network.

Simulations were performed using the described process on the coupled awareness-epidemic model created, with 𝑁 = 2000
nodes, 𝑝1 ≈ 0.04, 𝑝2 ≈ 3 × 10−6, ⟨𝑘1⟩ around 20, and

⟨

𝑘𝛥1
⟩

around 6. For the information network layer, the network is constructed by
removing 20% of the nodes from the physical contact network and adding 20% more nodes to form new links. Similar to real-world
coupled awareness-epidemic model, 𝑝𝐼 (0) percent of seed infectious nodes were randomly placed in the physical contact network,
while fixed seed infectious nodes were randomly placed in the information network. The average steady-state density of infection
𝑝𝐼∗ was calculated by averaging overruns with different instances of the model for different information influence values 𝛾.

3.2.2. Simulation results
In Fig. 3, we observe that the network of synthetic structures exhibits bistability regions when 𝛾 = 1 and 𝛾 = 0.8, indicating

he presence of two stable states in the system: one representing a healthy state and the other indicating a disease outbreak state.
owever, as 𝛾 decreases to 0.2 and 0, we observe the disappearance of these bistability regions and an increase in the threshold

or disease outbreak. This suggests that as the influence of the information network increases, characterized by the decrease in 𝛾,
he system’s stability undergoes significant changes. The previously unstable states induced by high-order structures in the system
radually converge towards stable states, while the conditions required for disease outbreaks become more stringent.

In synthetic simplicial complex composite with controllable attributes, we observe a phenomenon that as information network
nfluence 𝛾 decreases, the bistability regions gradually diminish and eventually disappear. This implies that increased information
ropagation weakens the system’s bistability, leading it to tend more towards a single stable state.

Therefore, through the intervention of information dissemination, an information network can influence the high-order structure
within the physical contact network, thereby altering the range and characteristics of bistability phenomena. Specifically, as the
information influence value 𝛾 of the information network decreases, the increase in the influence of the information network may
strengthen its regulation over individual behaviors within the physical contact network, thus suppressing the influence of high-order
structures in the original network. This may lead to the bistability region’s reduction or complete disappearance, as the physical
contact network is no longer influenced by high-order structures and exhibits a single stable state.
6 
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Fig. 3. The simulation results of the coupled awareness-epidemic model, where the physical contact network is constituted by synthetic simplicial complexes
with controlled attributes, with 𝛾 = 1 (𝑟𝑒𝑑), 𝛾 = 0.8 (𝑝𝑢𝑟𝑝𝑙 𝑒), 𝛾 = 0.2 (𝑏𝑙 𝑢𝑒), and 𝛾 = 0 (𝑔 𝑟𝑎𝑦), ◦ representing 𝑝𝐼 (0) = 0.01, and ∗ representing 𝑝𝐼 (0) = 0.2. The
horizontal axis represents rescaled infectivity 𝛽∗. The vertical axis represents density of infected nodes 𝑝𝐼∗ .

3.3. Mean field approach

The mathematical expression of the above propagation process is particularly significant in determining how the disease evolves
over time. In this study, we employ the mean-field method [45] to derive the state evolution equation of each state.

We model the evolution of the densities of the four states in the network on the corresponding propagation processes. The
volution process is illustrated in Fig. 4.

𝑑 𝑝𝑆 𝑈
𝑑 𝑡 =𝜇1𝑝𝐼 𝑈 + 𝜇2𝑝

𝑆 𝐴 − 𝑝𝑆 𝑈𝛽 ⟨𝑘1⟩ (𝑝𝐼 𝐴 + 𝑝𝐼 𝑈 ) − 𝑝𝑆 𝑈𝛽𝛥 ⟨𝑘𝛥1
⟩

(𝑝𝐼 𝐴 + 𝑝𝐼 𝑈 )2 − 𝑝𝑆 𝑈𝜆 ⟨𝑘2⟩ (𝑝𝐼 𝐴 + 𝑝𝑆 𝐴),
𝑑 𝑝𝐼 𝑈
𝑑 𝑡 = − 𝜇1𝑝

𝐼 𝑈 + 𝜇2𝑝
𝐼 𝐴 + 𝑝𝑆 𝑈𝛽 ⟨𝑘1⟩ (𝑝𝐼 𝐴 + 𝑝𝐼 𝑈 ) + 𝑝𝑆 𝑈𝛽𝛥 ⟨𝑘𝛥1

⟩

(𝑝𝐼 𝐴 + 𝑝𝐼 𝑈 )2 − 𝑝𝐼 𝑈𝜆 ⟨𝑘2⟩ (𝑝𝐼 𝐴 + 𝑝𝑆 𝐴),
𝑑 𝑝𝑆 𝐴
𝑑 𝑡 = − 𝜇2𝑝

𝑆 𝐴 + 𝜇1𝑝
𝐼 𝐴 + 𝑝𝑆 𝑈𝜆 ⟨𝑘2⟩ (𝑝𝐼 𝐴 + 𝑝𝑆 𝐴) − 𝑝𝑆 𝐴𝛾 𝛽 ⟨𝑘1⟩

(𝑝𝐼 𝑈 + 𝑝𝐼 𝐴) − 𝑝𝑆 𝐴𝛾 𝛽𝛥 ⟨𝑘𝛥1
⟩

(𝑝𝐼 𝑈 + 𝑝𝐼 𝐴)2,
𝑑 𝑝𝐼 𝐴
𝑑 𝑡 = − 𝜇2𝑝

𝐼 𝐴 − 𝜇1𝑝
𝐼 𝐴 + 𝑝𝐼 𝑈𝜆 ⟨𝑘2⟩ (𝑝𝐼 𝐴 + 𝑝𝑆 𝐴) + 𝑝𝑆 𝐴𝛾 𝛽 ⟨𝑘1⟩

(𝑝𝐼 𝑈 + 𝑝𝐼 𝐴) + 𝑝𝑆 𝐴𝛾 𝛽𝛥 ⟨𝑘𝛥1
⟩

(𝑝𝐼 𝑈 + 𝑝𝐼 𝐴)2.

(1)

After introducing these two variables 𝑝𝐼 = 𝑝𝐼 𝑈+𝑝𝐼 𝐴 and 𝑝𝐴 = 𝑝𝑆 𝐴+𝑝𝐼 𝐴 with the additional condition that 𝑝𝑆 𝑈+𝑝𝐼 𝑈+𝑝𝑆 𝐴+𝑝𝐼 𝐴 = 1,
we ultimately obtained a coupled system of equations:

𝑑 𝑝𝐼
𝑑 𝑡 = − 𝜇1𝑝

𝐼 + (𝛽 ⟨𝑘1⟩ 𝑝𝐼 + 𝛽𝛥
⟨

𝑘𝛥1
⟩

(𝑝𝐼 )2)[1 − 𝑝𝐼 + (𝑝𝐼 𝐴 − 𝑝𝐴)(1 − 𝛾)],

𝑑 𝑝𝐴
𝑑 𝑡 = − 𝜇2𝑝

𝐴 + (1 − 𝑝𝐴)𝜆 ⟨𝑘2⟩ 𝑝𝐴,

𝑑 𝑝𝐼 𝐴
𝑑 𝑡 = − (𝜇1 + 𝜇2)𝑝𝐼 𝐴 + (𝑝𝐼 − 𝑝𝐼 𝐴)𝜆 ⟨𝑘2⟩ 𝑝𝐴 + (𝑝𝐴 − 𝑝𝐼 𝐴)𝛾(𝛽 ⟨𝑘1⟩ 𝑝𝐼 + 𝛽𝛥

⟨

𝑘𝛥1
⟩

(𝑝𝐼 )2).

(2)

This differential equation System (1) has four variables. Through gradual simplification, a differential equation System (2)
containing three variables 𝑝𝐼 , 𝑝𝐴, and 𝑝𝐼 𝐴 is obtained. Here, 𝑝𝐼 represents the ratio of individuals in state 𝐼 , and 𝑝𝐴 in state 𝐴.

Next, we analyze the infection equilibrium point of the above equations to evaluate the impact of information network by
higher-order structures. The equilibrium point of disease transmission refers to the state in which the disease transmission rate
within a group reaches equilibrium, namely the average number of new infections transmitted by each infected individual remains
unchanged. Analyzing the equilibrium point of disease transmission can help understand the situation and characteristics of disease
transmission within the population, thus developing effective prevention and control measures.
7 
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Fig. 4. Schematic diagram of the evolution process of four states in the network. 𝛽 represents the disease infection rate, 𝛽𝛥 represents the disease high-order
action infection rate, 𝜆 represents the information network infection rate, 𝜇1 and 𝜇2 represent the disease network and information network recovery rate,
respectively, and 𝛾 represents the information influence value.

An infection equilibrium 𝐸∗ = (𝑝𝐼∗ , 𝑝𝐴∗ , 𝑝𝐼 𝐴∗ ) is derived by setting the right part of system (2) equal to 0:
− 𝜇1𝑝

𝐼 + (𝛽 ⟨𝑘1⟩ 𝑝𝐼 + 𝛽𝛥
⟨

𝑘𝛥1
⟩

(𝑝𝐼 )2)[1 − 𝑝𝐼 + (𝑝𝐼 𝐴 − 𝑝𝐴)(1 − 𝛾)] = 0,
− 𝜇2𝑝

𝐴 + (1 − 𝑝𝐴)𝜆 ⟨𝑘2⟩ 𝑝𝐴 = 0,
− (𝜇1 + 𝜇2)𝑝𝐼 𝐴 + (𝑝𝐼 − 𝑝𝐼 𝐴)𝜆 ⟨𝑘2⟩ 𝑝𝐴 + (𝑝𝐴 − 𝑝𝐼 𝐴)𝛾(𝛽 ⟨𝑘1⟩ 𝑝𝐼 + 𝛽𝛥

⟨

𝑘𝛥1
⟩

(𝑝𝐼 )2) = 0.
(3)

It means 𝑝𝐴∗ = 1 − 𝜇2
𝜆⟨𝑘2⟩

, and we obtain

𝑝𝐼 𝐴∗ =
𝜇1

𝛽 ⟨𝑘1⟩ + 𝛽𝛥
⟨

𝑘𝛥1
⟩

𝑝𝐼 (1 − 𝛾)
−

1 − 𝑝𝐼

1 − 𝛾
+ 𝑝𝐴∗ . (4)

Then we can get 𝑝𝐼∗ by solving 𝑓 (𝑝𝐼∗) = 0, with:

𝑓 (𝑝𝐼∗) = 𝐴(𝑝𝐼∗)
4 + 𝐵(𝑝𝐼∗)

3 + 𝐶(𝑝𝐼∗)
2 +𝐷 𝑝𝐼∗ + 𝐸 , (5)

where the parameters 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 are as follows:
𝐴 = − 𝛾(𝛽𝛥)2

⟨

𝑘𝛥2
⟩

𝜆 ⟨𝑘2⟩ ,

𝐵 =𝛾
⟨

𝑘𝛥1
⟩

𝛽𝛥(
⟨

𝑘𝛥1
⟩

𝛽𝛥 − 2𝛽 ⟨𝑘1⟩)𝜆 ⟨𝑘2⟩ ,
𝐶 = − ⟨𝑘2⟩ 𝜆(((𝜆 ⟨𝑘2⟩ − 2𝛽 ⟨𝑘1⟩ − 𝜇2 + 𝜇1)𝛾 + 𝜇2 + 𝜇1)

⟨

𝑘𝛥1
⟩

𝛽𝛥 + 𝛾 𝛽2 ⟨𝑘21
⟩

),

𝐷 = − 𝛾 𝜆2(𝛽 ⟨𝑘1⟩ −
⟨

𝑘𝛥1
⟩

𝛽𝛥)
⟨

𝑘22
⟩

+ 𝜆((−
⟨

𝑘𝛥1
⟩

(𝜇2 − 𝜇1)𝛽𝛥 + 𝛽 ⟨𝑘1⟩ (𝛽 ⟨𝑘1⟩ + 𝜇2 − 𝜇1))𝛾

+ 𝛽𝛥𝜇2
⟨

𝑘𝛥1
⟩

− 𝛽 ⟨𝑘1⟩ (𝜇1 + 𝜇2)) ⟨𝑘2⟩ − 𝜇2𝜇1
⟨

𝑘𝛥1
⟩

𝛽𝛥(𝛾 − 1),
𝐸 =(𝜆(𝛾 𝛽 ⟨𝑘1⟩ − 𝜇1) ⟨𝑘2⟩ − 𝛽 ⟨𝑘1⟩𝜇2(𝛾 − 1))(𝜆 ⟨𝑘2⟩ + 𝜇1).

(6)

The corresponding solutions can be obtained by solving a univariate quartic equation, which relates to the values of disease
ensity after the disease spread has reached a corresponding steady state. We substitute the solutions of the System (5) into the

System (4) to obtain the equilibrium points and calculate the Jacobian determinant corresponding to the equilibrium points to
determine their stability.

3.3.1. Analysis of equilibrium points and stability
Under different degrees of information impact denoted by 𝛾, the conditions for the existence of equilibrium points lead to different

outcomes. Fig. 5(a) illustrates the equilibrium points obtained by solving System (2) under different 𝛾. As shown in Fig. 5(a), when
𝛾 = 1, bistability phenomena occur in the presence of higher-order structures. In this case, two different thresholds are derived:
0
∗1 ≈ 0.846 and 𝛽𝑐∗1 = 1, resulting in bistability phenomena. When 𝛾 = 0.2, the bistability phenomena disappear, leaving only one
hreshold 𝛽𝑐 ≈ 1.326.
∗2
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Fig. 5. (a) The system’s equilibrium points under different information values impact factor 𝛾. (b) Numerical solutions of the system at 𝑡 = 500 under different
values of information impact factor 𝛾 and initial infection density 𝑝𝐼 (0) = 0.01 or 0.2. For both cases, set 𝜇1 = 𝜇2 = 0.05. The horizontal axis represents rescaled
infectivity 𝛽∗. The vertical axis represents the density of infected nodes 𝑝𝐼∗ .

Fig. 6. The numerical solutions for the system under different initial values, where the information influence value 𝛾 = 1, (a) 𝛽∗1 = 0.5, (b) 𝛽∗1 = 0.9, (c) 𝛽∗1 = 1.5,
nd when the information influence value 𝛾 = 0.2, (d) 𝛽∗2 = 0.9, (e) 𝛽∗2 = 1.5. 𝛽∗1 represents the infectivity when 𝛾 = 1, and 𝛽∗2 represents the infectivity when
= 0.2. The horizontal axis represents Time 𝑡. The vertical axis represents density of infected nodes 𝑝𝐼∗ .

Fig. 5(b) provides the numerical solutions of system (4) at 𝑡 = 500, obtained by setting initial values as [𝑝𝐴(0) = 0.2, 𝑝𝐼 (0) =
0.01, 0.2], confirming the stability of equilibrium points in the system. The results indicate that when 𝛾 = 1, the information network
does not influence the physical contact network, and bistability phenomena occur due to the presence of higher-order structures
(i.e., the coexistence of disease-free equilibrium and endemic equilibrium). As 𝛾 decreases, the bistability interval gradually shrinks
until it disappears. In this case, given 𝛽∗1 = 0.9 (𝛽∗1 represents the infectivity when 𝛾 = 1), there exist two stable equilibrium points
within the non-negative interval, denoted as 𝛽0∗1 and 𝛽𝑐∗1, where 𝛽∗1 satisfies 𝛽0∗1 < 𝛽∗1 < 𝛽𝑐∗1, resulting in bistability as depicted
n Fig. 6(b). Fig. 6(b) illustrates the numerical solutions of the system for different initial values. Depending on the initial values,

the system tends towards either the disease-free or the endemic equilibrium point. Convergence to the disease-free equilibrium
implies the eventual disappearance of the disease. Reaching the endemic equilibrium point indicates the outbreak and the density
of infected nodes stabilizes at a certain value. When 𝛽∗1 satisfies 𝛽∗1 < 𝛽0∗1 (as depicted in Fig. 6(a)), the system has a stable disease-
free equilibrium point. However, when 𝛽∗1 satisfies 𝛽∗1 > 𝛽𝑐∗1 (as depicted in Fig. 6(c)), a stable endemic equilibrium exists in the
system.

In conclusion, as shown in Fig. 5(b), the system reaches the stable endemic equilibrium because it is stable. When considering
𝛾 = 0.2, indicating a high influence from the information network on the physical contact network, there exists only one stable
equilibrium within the non-negative interval, hence, the bistability phenomena disappear. When 𝛽∗2(𝛽∗2 represents the infectivity
when 𝛾 = 0.2) satisfies 𝛽 < 𝛽𝑐 (as depicted in Fig. 6(d)), the System (3) has a stable disease-free equilibrium, indicating convergence
∗2 ∗1
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Fig. 7. The phase diagram of the coupled awareness-epidemic network, where (a) and (b) depict the steady-state heatmap obtained from the equations, (c)
illustrates the change in threshold under different initial infection values as the information influence value 𝛾 decreases. The horizontal axis represents rescaled
infectivity 𝛽∗. The vertical axis represents the information influence value 𝛾.

to the stable disease-free equilibrium. When 𝛽∗2 satisfies 𝛽∗2 > 𝛽𝑐∗1 (as depicted in Fig. 6(e)), a stable endemic equilibrium exists in
the System (3). Overall, as 𝛾 decreases, the reverse bifurcation turns into a forward bifurcation, leading to the gradual disappearance
of bistability. It is also observed that as 𝛾 decreases, the outbreak threshold 𝛽𝑐∗2 increases. When 𝛽∗2 > 𝛽𝑐∗2 (i.e., post-outbreak) and
𝛽∗2 is fixed, the value of the endemic equilibrium decreases.

3.3.2. The heatmaps of steady-state
Furthermore, we further analyzed the steady-state obtained by the system, as shown in Fig. 7. Fig. 7(a) and (b) respectively

represent the infection density achieved at steady state under different infection strengths and information impact values with
initial infection densities at 0.2 and 0.01. The horizontal axis represents the infection strength, and the vertical axis represents the
information impact value, which decreases gradually from 1 to 0. Fig. 7(c) represents the infection threshold curves for disease
outbreaks as the information influence value 𝛾 decreases from 1 to 0, considering initial infection densities of 0.01 and 0.2,
respectively.

The phenomenon observed is supported by Fig. 7(a) and (b), indicating that as the influence of information decreases, the
threshold for infection gradually increases. Furthermore, upon further comparison, it is noted that the decrease in threshold observed
in Fig. 7(a) is greater than that in Fig. 7(b). This suggests that as the influence of information weakens, the infection threshold for
disease spread also correspondingly rises, and this trend varies under different circumstances. Simultaneously, curves depicting the
changes in threshold with decreasing information impact value 𝛾 under different initial infection densities are plotted. In Fig. 7(c),
it can be observed that the bistability range gradually shrinks until it disappears. This indicates that as the influence of information
network increases, it negatively impacts the disease transmission process, effectively slowing down or eliminating the bistability
phenomenon in physical contact network. This is because as 𝛾 decreases, the stability of System (2) transitions from forward
bifurcation to backward bifurcation. Thus, better control of disease spread can be achieved.

Therefore, it can be concluded that the impact of information can affect the existence and stability of disease-free equilibrium
and endemic equilibrium, thus determining the occurrence of forward and backward bifurcations, which are crucial reasons for
the existence or absence of bistability. Furthermore, the outbreak threshold and stable infection states also vary with the value of
information impact.

4. Conclusion

In summary, the proposed coupled awareness-epidemic model considers higher-order interactions and incorporates the influence
of information network on physical contact network to study collective interactions. It was discovered that information networks
trigger richer dynamic phenomena in disease spreading. Extensive experiments were conducted to test the dynamics of higher-order
simplicial complexes on both real-world and synthetic networks composed of simplicial complexes. As the influence of information
increases, the transition shifts from discontinuous to continuous, leading to the gradual disappearance of bistability phenomena
generated by higher-order structures, which indicates a trend towards greater stability in epidemic outbreaks. Theoretical analysis
based on mean-field approximation was performed on the coupled awareness-epidemic model considering higher-order interactions.
The results show that with increasing information influence, system stability transitions from forward bifurcation to backward
bifurcation and the system’s stability is enhanced.

Furthermore, introducing information networks into epidemic models plays a suppressive role in disease propagation. Theoretical
and simulation results emphasize the significant role of information networks in disease propagation with higher-order structures.
The stability of equilibrium is demonstrated to aid in understanding the system’s stability. In practical scenarios, effective information
dissemination can inhibit disease transmission, reduce the risk of disease outbreaks due to population aggregation, and raise the
threshold for disease outbreaks and occurrences. Future research can be directed to investigate other complicated interaction patterns
between information networks and physical contact network.

While this study provides important insights into the role of information networks and higher-order interactions, it adopts a
simplified SIS model, neglecting factors of incubation, vaccination, quarantine. Future work could extend the model by incorporating
10 
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these factors to further enhance its relevance to real-world scenarios and provide more precise epidemic prevention strategies.
dditionally, the model assumes idealized network structures and focuses on the dynamics of higher-order interactions without

ully addressing the structural differences between the information and contact networks. The structure of the information network,
ypically modeled as a social network, differs significantly from the physical contact network in terms of properties such as degree
istribution, clustering, modularity, and heterogeneity. These structural features can profoundly affect the diffusion of information
nd, consequently, the spread of disease. Future research could explore how different network structures impact the interplay
etween information dissemination and disease transmission, providing deeper insights into these complex dynamics.
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Appendix A. Augmentation techniques

The augmentation techniques involves extracting the list of sizes of the maximal simplices, also known as facets, and the list
f pure simplicial degrees of nodes for each dataset. These lists are then duplicated five times, and the extended lists is applied as
nput to the simplicial configuration model. This process generates simplicial complexes that maintain the statistical characteristics
f the original complex but are substantially larger in size.

Appendix B. Microscopic Markov chain approach

We denote the probability of individual 𝑖 being in states AS, AI, NS, and US at time step 𝑡 by 𝑝𝐴𝑆𝑖 (𝑡), 𝑝𝐴𝐼𝑖 (𝑡), 𝑝𝑁 𝑆
𝑖 (𝑡), and 𝑝𝑈 𝑆𝑖 (𝑡),

espectively. Additionally, at each time step, the normalization condition 𝑝𝐴𝑆𝑖 (𝑡) + 𝑝𝐴𝐼𝑖 (𝑡) + 𝑝𝑁 𝑆
𝑖 (𝑡) + 𝑝𝑈 𝑆𝑖 (𝑡) = 1 must be satisfied. We

ropose using a probability tree to reveal the potential states of nodes and their transitions, as shown in Fig. 8. Based on Fig. 8, we
derive the MMCA equations for coupled dynamics in multiplex networks using the total probabilities of different states. Let 𝑎𝑖𝑗 and
𝑖𝑗 represent the adjacency matrices supporting the UAU and SIS processes, respectively. 𝐶𝑖𝑗 𝑘 indicates whether three nodes 𝑖, 𝑗,

and 𝑘 are in the same positive disease 2-simplices (if they are, then 𝑐𝑖𝑗 𝑘 = 1; otherwise, 𝑐𝑖𝑗 𝑘 = 0). Assuming the absence of dynamic
correlations, the transition probability of node 𝑖 not being informed by any neighbors is 𝑟𝑖(𝑡), 𝑖 not being infected by any neighbors
when perceiving 𝑞𝐴𝑖 (𝑡), and 𝑖 not being infected by any neighbors when not perceiving 𝑞𝑈𝑖 (𝑡).

𝑟𝑖(𝑡) =
∏

𝑗
[1 − 𝑎𝑗 𝑖𝑝𝐴𝑗 (𝑡)𝜆],

𝑞𝐴𝑖 (𝑡) =
∏

𝑗
[1 − 𝑏𝑗 𝑖𝑝𝐼𝑗 (𝑡)𝛽𝐴] ⋅

∏

𝑘,𝑙
[1 − 𝛽𝛥𝛾 𝑐𝑘𝑙 𝑖𝑝𝐼𝑘(𝑡)𝑝𝐼𝑙 (𝑡)],

𝑞𝑈𝑖 (𝑡) =
∏

𝑗
[1 − 𝑏𝑗 𝑖𝑝𝐼𝑗 (𝑡)𝛽𝑈 ] ⋅

∏

𝑘,𝑙
[1 − 𝛽𝛥𝑐𝑘𝑙 𝑖𝑝𝐼𝑘(𝑡)𝑝𝐼𝑙 (𝑡)].

(B.1)

Among them, 𝑝𝐴𝑗 = 𝑝𝐴𝐼𝑗 + 𝑝𝐴𝑆𝑗 , 𝑝𝐼𝑗 = 𝑝𝐴𝐼𝑗 + 𝑝𝐴𝑆𝑗 . Using Eq. (B.1), the microscopic Markov chain of the coupling process for each
ode 𝑖 can be obtained.

𝑝𝐴𝐼𝑖 (𝑡 + 1) =𝑝𝐴𝐼𝑖 (𝑡)(1 − 𝜇1)(1 − 𝜇2) + 𝑝𝑈 𝑆𝑖 (𝑡)(1 − 𝑟𝑖)(1 − 𝑞𝐴𝑖 )

+ 𝑝𝐴𝑆𝑖 (1 − 𝜇2)(1 − 𝑞𝐴𝑖 ) + 𝑝𝑈 𝐼𝑖 (𝑡)(1 − 𝑟𝑖)(1 − 𝜇1),

𝑝𝑈 𝑆𝑖 (𝑡 + 1) =𝑝𝐴𝐼𝑖 (𝑡)𝜇1𝜇2 + 𝑝𝑈 𝑆𝑖 (𝑡)𝑟𝑖𝑞𝑈𝑖 + 𝑝𝐴𝑆𝑖 𝜇2𝑞
𝑈
𝑖 + 𝑝𝑈 𝐼𝑖 (𝑡)𝑟𝑖𝜇1,

𝑝𝐴𝑆𝑖 (𝑡 + 1) =𝑝𝐴𝐼𝑖 (𝑡)(1 − 𝜇2)𝜇2 + 𝑝𝑈 𝑆𝑖 (𝑡)(1 − 𝑟𝑖)𝑞𝐴𝑖 + 𝑝𝐴𝑆𝑖 (1 − 𝜇2)𝑞𝐴𝑖
+ 𝑝𝑈 𝐼𝑖 (𝑡)(1 − 𝑟𝑖)𝜇1,

𝑝𝑈 𝐼𝑖 (𝑡 + 1) =𝑝𝐴𝐼𝑖 (𝑡)(1 − 𝜇1)𝜇2 + 𝑝𝑈 𝑆𝑖 (𝑡)𝑟𝑖(1 − 𝑞𝑈𝑖 ) + 𝑝𝐴𝑆𝑖 𝜇2(1 − 𝑞𝑈𝑖 )

+ 𝑝𝑈 𝐼𝑖 (𝑡)𝑟𝑖(1 − 𝜇1).

(B.2)
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g
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Fig. 8. UAU - SIS dynamic system state transition probability tree at each time step for states (A) AI, (B) US, (C) AS, and (D) UI. Denoted as (AI) Aware-
nfected, (AS) Aware-Susceptible, (UI) Unaware-Infected, (US) Unaware-Susceptible, the transition probability from aware to unaware, the transition probability
rom infected to susceptible, the transition probability 𝑟𝑖 from unaware to aware given by neighbors, the transition probability 𝑞𝐴𝑖 from susceptible to infected
iven by neighbors if the node is aware, and the transition probability 𝑞𝑈𝑖 from susceptible to infected given by neighbors if the node is unaware.

Data availability

Data will be made available on request.
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